IoT Long Range Wireless Environmental Temperature Humidity Pressure Air Quality Sensor
Highlights
- Industrial Grade Environment IoT Sensor for Monitoring
- Temperature, Pressure, Humidity, Gas Resistance & Indoor Air Quality
- Operating Temperature Range -40 to +85 °C
- Operating Pressure Range 300 to 1100% hPa
- Operating Humidity Range 0 to 100% r.H.
- Gas Resistance Output in Ohms
- Inbuilt Indoor Air Quality Metric Calculation with a 0-100 Range
- Configurable Heater Temperature & Duration for Gas Resistance Sampling
- 2 Mile Range with 900MHz On-Board Antenna
- Superior LOS Range of up to 28 miles with 900MHz High-Gain Antennas
- Interface to Raspberry Pi, Microsoft Azure, Arduino and More
- Example Software for Visual Studio and LabVIEW
- Wireless Mesh Networking using DigiMesh®
- Power Efficient Built-in Sleep mode
- Secure Transmission using AES-128 Encryption
IoT Long Range Wireless Environmental Temperature Humidity Pressure Air Quality Sensor
Introducing NCD’s IoT Wireless Environment Temperature Humidity Pressure and Air Quality Sensor, boasting up to a 2 Mile range using a 900MHz wireless mesh networking architecture. Incorporating a high-resolution sensor, this device samples and processes temperature, pressure, humidity and gas resistance. Once environmental data is collected, it transmits this information to a gateway or modem up to 2 miles away. The whole process is repeated at user-defined intervals. For technical details on the sensing capabilities, please refer to the BOSCH BME680 datasheet. Powered by just 2 AA batteries and an operational lifetime of 300,000 wireless transmissions, a 3 years battery life can be expected depending, based on environmental conditions and the data transmission interval. Optionally, this sensor may be externally powered.
IoT Security
We take IoT security very seriously, which is why we encrypt every IoT sensor, gateway, modem, and device in the NCD Enterprise product line. Encryption is much easier to manage than you might expect, as the encryption does not get in the way of using the device. We include a standard 128-Bit AES Encryption key with every device or we can help you integrate a new encryption key into all of your devices. All hardware devices must use the same encryption key. Once the keys are set, the hardware manages the rest for you, 100% in the background.
Wireless Range and Protocol
NCD long-range wireless IoT sensors use the DigiMesh® protocol from Digi.com. DigiMesh® was designed by THE industrial leader in secure wireless communications for industrial applications. DigiMesh® automatically hops data from gateway to gateway until it arrives at the desired destination. NCD IoT sensors are capable of a 2-Mile line-of-site communication distance with the included antennas and up to 28-mile range when using high-gain antennas.
Your IoT Sensor Data Belongs to You!
Your data belongs to YOU and it’s up to you to decide where you want your IoT sensor data to arrive. Don’t be bogged down by the limitations of proprietary cloud solutions, post the data where you need it most. We offer an open communications protocol so you can integrate NCD wireless transmitters into your own software. This allows integration of NCD IoT sensors into any control system or gateway you could ever imagine. Send data to a PC, Mac, or Linux computer, or a Raspberry Pi using NCD modems. Send data to popular cloud platforms such as Microsoft® Azure® IoT, Losant, and MQTT using NCD Micro Gateways. We can also help get data from NCD wireless IoT sensors to embedded platforms such as Arduino. We also offer sample code for Microsoft® Visual Studio, Node-RED, LabVIEW®, and Python. Our documentation fully breaks down the packet structure, so integration into other languages is possible. We may even be able to help, so please feel free to contact us if you are working with a platform not mentioned here.
There is no better Long Range Wireless Environment Temp Humidity Pressure and Air Quality Sensor on the market today. Nothing compares with the long range, the price, the accuracy, the battery life, or the security features we have to offer.
Note- This sensor has in built heater and it takes around 30 minutes to burn in. During the burn in time, the sensor need to be placed in a clean air environment.
Transmission Interval
This device sends data periodically, based on user-preset timing intervals.
IoT Sensor Data Transmission
NCD IoT Sensors send a lot more than just sensor data. Of course the sensor data is also included in the data packet, but other important data is also included. For instance, a unique serial number is sent so you can always identify a particular sensor on the network. A Node ID is also included, which a single byte of data that you can use for anything, such as the floor of a building or to help identify which group a sensor belongs to. Also included in the data packet is a firmware version, battery level, and sensor type. This allows your software to positively identify and manage the health of NCD IoT wireless sensors. While signal strength data is also available, it is handled in a different way, and is not included in the sensor data packet (but rest assured, signal strength data for each sensor is available). Please see the Resources tab to see detailed information on the data structure of this device.
This wireless transmitter needs a receiver. There are many options available for receiving data from NCD IoT devices, please see below for a in-depth description of destinations available for NCD sensors. We highly recommend using our USB Modem (available during purchase) so you can monitor this device and use our LabVIEW® software for changing device settings. Some sensors have advanced settings that can help send alerts when problems are detected while other settings can be used to adjust communication frequency, which will directly affect battery life.
How Long will the Batteries Really Last?
Most NCD IoT Sensors are rated for about 500,000 transmissions until the batteries become so weak they are unreliable; however, this particular sensor consumes more power than most, and carries an expected life of 300,000 transmissions or up to 3 years of life. With 100,000 transmissions per year, you should expect to see up to 273 transmissions per day or 11 transmissions per hour. The battery life could be extended by reducing the number of transmissions per day, so the battery life is really up to you. By altering advanced settings in the NCD IoT sensor, you have control over longevity. NCD ships all sensors with premium Lithium batteries, which include a ultra-wide temperature range that typically lasts in excess of 300,000 transmissions. These batteries weigh less than half of alkalines, and they work in the freezer! A word of caution though, putting a sensor in configuration mode will drain the batteries very quickly. It’s important to configure your sensors and exit configuration mode as soon as possible or use a external power supply during configuration (if supported by the sensor).
How Do I Change Settings and Examine Raw Sensor Data?
Using our long-range USB wireless modem, users can expect easy operation over a virtual COM port at 115.2K baud. Simply open the virtual COM port of the USB modem and watch data stream in. Optionally, we offer a Wireless receiver that operates over Ethernet. Data from NCD sensors will appear over TCP/IP on port 2101. Simply open a TCP/IP socket, port 2101, to the IP address of the Ethernet modem and see your data stream in to your local area network. Alpha Station was developed to work with our wireless modems. Of course gateways are also available for sending data to popular cloud platforms such as Azure® and Losant (more information below). We take software samples seriously, so be sure to to check out the “Resources” tab to see code samples for Raspberry Pi, Visual Studio, LabVIEW®, Arduino, Python, and more.

Applications
- Long Endurance Industrial Automation
- Indoor Air Quality Monitoring
- Home Automation and Control
- Component of a IoT HVAC System
- Weather Forecast at Remote Locations
- Wireless Weather Monitoring for Raspberry Pi/Arduino
- Wireless Air Quality Monitoring for AWS® and Azure®
Where do I send my IoT Sensor Data?
Your Sensors…Your Data…
NCD IoT Sensor Data can be sent anywhere with NO FEES OR HIDDEN COSTS, NOT NOW, NOT EVER! NCD IoT Sensors always provide an open protocol, so you are not tied to any cloud platform. You own your data, so you can do whatever you want with it, no subscriptions, no service contracts, and you can integrate NCD sensors into any software, embedded system, or cloud platform of your own free choice.

Send IoT Sensor Data Anywhere. Send IoT Sensor Data EVERYWHERE!
Whether you need IoT sensor data on a desktop computer, an IoT cloud platform, or an embedded platform, we have you covered. NCD IoT sensors broadcast data, so data handling is very easy, expandable, and versatile. Send IoT sensor data to Gateways when you want to talk directly to IoT cloud platforms. Send IoT Sensor data to Modems when you want to talk to local computers. Of course you can always send data to both gateways and modems simultaneously, so you always have access to your sensor data locally and remotely. Use multiple Gateways when you need data redundancy or if you need to send sensor data to multiple IoT cloud platforms.
Organize Your IoT Sensors for Large Installations
IoT Sensor Clusters are also possible. You can build a cluster of IoT sensors on every floor of a high-rise building, sending data to gateways and modems on each floor. Clustering makes it possible to keep your IoT sensor data separated for easier management. Each Gateway and Modem can be configured to listen to a different cluster of IoT sensors. Because NCD devices support thousands of clusters, expanding your IoT sensor network is virtually limitless.
Modem or Gateway?
- Gateways are used to translate data from sensors into human-readable values and post the results on common cloud platforms such as AWS, Azure, Losant, and MQTT using Wi-Fi for communications.
- Modems on the other hand are used to transfer raw sensor data byte values into different communication formats such as Wi-Fi, Bluetooth, USB, RS-485 and RS-232.
- IoT Edge Computers are small computers that may be programmed to communicate to any cloud platform. NCD IoT Edge Computers run Node-RED and require experience working with this platform. This solution is best for industrial customers with complex installation requirements. This solution also supports cellular and ethernet connectivity. Note: Plugging a USB Modem into a standard computer running Node-RED is roughly a hardware equivalent solution (with the exception of cellular connectivity).
- Mixing Modems and Gateways. NCD IoT Sensors broadcast data, which can be picked up by multiple Modems, Gateways, and IoT Edge Computers. You can have as may modems and gateways as your application requires, you are not limited to choosing a single IoT endpoint solution.
Send IoT Sensor Data to AWS® IoT
Collect IoT Sensor Data up to Two Miles Away and send your data to AWS® IoT using the NCD Micro Gateway for AWS. Leverage the power of the AWS® IoT to connect to the complete ecosystem of NCD IoT Wireless Sensors. The NCD Micro Gateway for AWS® automatically provisions the gateway on the AWS® Cloud and registers all IoT sensors as children of the gateway. Watch IoT Sensor data arrive on the AWS® cloud with minimal setup time.
Setup could not be easier. The NCD Micro Gateway uses SoftAP and includes embedded web pages for configuration. Simply connect your Wi-Fi capable computer to the NCD Micro Gateway Access Point and the Configuration Pages will appear. All you need are AWS® connection credentials and a Wi-Fi network with internet connectivity.
Send IoT Sensor Data to Microsoft® Azure® IoT
Collect IoT Sensor Data up to Two Miles Away and send your data to Microsoft® Azure® using the NCD Micro Gateway for Connection to Azure.
The Micro Gateway for Microsoft® Azure® reports all incoming IoT sensor telemetry as real-world values to Microsoft® Azure® through the connected Device Twin, and/or Device to Cloud Messages.
Setup could not be easier. The NCD Micro Gateway uses SoftAP and includes embedded web pages for configuration. Simply connect your Wi-Fi capable computer to the NCD Micro Gateway Access Point and the Configuration Pages will appear. All you need is an Azure® Device Connection String to register this device to your Azure® account and a Wi-Fi network with internet connectivity.
Send IoT Sensor Data to your MQTT Broker
Collect IoT Sensor Data up to Two Miles Away and send your data to your own MQTT broker using the NCD Micro Gateway for MQTT. Build your own cloud using the complete ecosystem of NCD IoT Wireless Sensors. The NCD Micro Gateway for MQTT sends JSON strings in human-readable values for easy integration into your own dedicated cloud applications. Build your own MQTT Broker or use Ubidots for displaying tiles of NCD IoT Sensor Data in just a few minutes!
Setup could not be easier. The NCD Micro Gateway uses SoftAP and includes embedded web pages for configuration. Simply connect your Wi-Fi capable computer to the NCD Micro Gateway Access Point and the Configuration Pages will appear. All you need are MQTT credentials and a Wi-Fi network with internet connectivity.
Send IoT Sensor Data to Ubidots using MQTT!
Send IoT Sensor Data to Losant
Collect IoT Sensor Data up to Two Miles Away and send your data to Losant using the NCD Micro Gateway. Leverage the power of the Losant Flow Builder to build a stunning dashboard that displays graphs of sensor telemetry over time.
The NCD Micro Gateway for Losant automatically provisions the gateway on the Losant Cloud and registers all IoT sensors as children of the gateway. Watch IoT Sensor data arrive on the Losant cloud with minimal setup time.
Setup could not be easier. The NCD Micro Gateway uses SoftAP and includes embedded web pages for configuration. Simply connect your Wi-Fi capable computer to the NCD Micro Gateway Access Point and the Configuration Pages will appear. All you need are Losant connection credentials (Application ID and Application Token) and a Wi-Fi network with internet connectivity.
Losant is an Official Partner of National Control Devices, Learn More about Losant Here.
IoT Edge Computer with LTE Cellular Wi-Fi and Ethernet
You’ve been asking for Cellular/Ethernet Solution and we’ve been listening! Pre-loaded with Node-RED and NCD Wireless Sensor Libraries help you get your sensor data connected to a cellular network or connect to Wi-Fi and Ethernet with unprecedented flexibility. This is a perfect solution for developers who are experienced with Node-RED and need the hardware to help get NCD sensors connected for complex integration tasks. Requires experience with Node-RED.
Using Modems with NCD IoT Sensors
Modems are ideal for communicating to localized computers, servers, and embedded systems. The main purpose of a modem is to convert data from Wireless Sensors and endNode controllers into standard hardware communication formats such as USB Virtual COM Port, Bluetooth Virtual COM Port, Wi-Fi TCP, Ethernet TCP, RS-232, and RS-485. Multiple modems may be used simultaneously, so you are not limited to making a single choice. Add more modems as needed to cover larger areas or explore other communication technologies. Both Modems and Gateways offer long range wireless communications up to 2-Miles line-of-sight. Modems and Gateways may also be used in a Wireless Mesh network to “Hop” data across the wireless network to cover longer distances. Both Modems and Gateways may be grouped into separate networks on each floor of a high-rise building without interference between floors.
Send IoT Sensor Data to Visual Studio
We Developed Alpha Station using Visual Studio to demonstrate how IoT sensor data can be received and converted to real-world values. Alpha Station allows you to view and set basic configuration settings of remote sensors up to 2 miles away. Alpha Station supports our Wireless USB Modem, our Mega Modem, and our Wireless Ethernet Modem. The source code and run-time application is available for download on our web site at https://ncd.io/alpha.
Send IoT Sensor Data to Node-RED
We Developed a complete set of Drivers for Node-RED, so you can build your own flows and dashboards to help get you connected. Send NCD IoT sensor data to Node-RED and use flows to build logic operations to send alerts or turn things on or off. Combining Node-RED with NCD IoT sensors gives you limitless power to monitor, control, and visualize data locally and remotely.
The Node-RED Flow Builder is powerful, allowing you to build complex graphs and dashboards in minutes. Node-RED may also be used for advanced Gateway applications. Send data to your favorite IoT Cloud service such as MQTT, Losant, Microsoft® Azure®, or AWS®. Since Node-RED runs on a local computer, a USB, RS-232, Ethernet or Mega Modem is required.
NCD Node-RED Libraries are always expanding, you can read about how to integrate our sensor into Node-RED Here.
Send IoT Sensor Data to LabVIEW®
Configure & Test IoT Sensors with LabVIEW®
We Developed a complete set of tutorials for working with NCD IoT Sensors using LabVIEW®. Use LabVIEW® to configure advanced sensor settings or to graph incoming sensor data. Monitor the battery level of remote sensors and watch sensor data flow over time. We will be adding source code for LabVIEW® in the future, but for now, please contact us if you have a urgent need for source code. Since LabVIEW® runs on a local computer, a USB, RS-232, Ethernet or Mega Modem is required.
Data Logging
Using our LabView software, data logging from a single sensor is also possible. Simply run the software and watch the graph fill with data over time. Export the data into comma delimited tables for use in Excel or into other data analysis tools. Logging data from multiple sensors simultaneously is not supported at this time in our software, but can be accomplished using Losant or Azure web services.
Please check the “Resources” tab above for resources relevant to this product or Click Here to see all of our LabVIEW® resources.
IoT Security and Transparency Statement
All IoT Device Manufacturers should commit to IoT Security and Transparency. As a consumer, you have the right to a IoT Security and Transparency Statement BEFORE purchase, and we encourage all customers to demand this information from all IoT Manufacturers and Vendors. In an effort to be fully transparent with our customers, we will always disclose the most important security related information at the bottom of each product page for all IoT Devices. Under no circumstances does NCD use IoT devices to collect customer data, sensor readings, or other information without full disclosure. As a matter of NCD IoT Security Policy, any IoT device that collects any form of data must be disclosed in the IoT Security and Transparency Statement. Relevant Security Information pertaining to this particular device is Indicated Below:
- This Device does not directly communicate to the internet
- This Device requires a Gateway for communication to the internet
- This Device Uses 128-Bit AES Encrypted Wireless Communications (Minimum)
- This Device is Equipped with a Default AES Encryption Key Common to All NCD Wireless Sensors at the Time of Shipping
- Users Have the Ability to Change the Default AES Encryption Key
- This Device Requires Physical Access to Change the AES Encryption Key
- This Device Does Not Have the Ability to Communicate to NCD Servers
- Firmware Upgrades Require Physical Access to this Device by NCD Engineers ONLY
Mechanical Drawing
Wiring Diagrams
Essential
- Wireless Environmental Sensor Product Manual
- Alpha Station – Sensor and Control Software for Windows using Visual Studio
- Long Range IoT Wireless Sensor FAQ
Documentation Downloads
Community Repositories
Enterprise 868 MHz Sensors
Enterprise 900MHz Sensors
Not for use in outdoor applications or for use in excessive temperature conditions. Prolonged freezing will prevent batteries from functioning until thawed, using extended temperature range industrial batteries may improve the useful temperature range. Extended freezing applications should use a full-time powered solution. Prolonged exposure to extreme humidity conditions may damage this device. The sensing element is rated for use for 5 years and may be replaced. Exposure to high temperatures may cause the batteries to leak, causing permanent damage to this device. NCD Warranty does not cover battery corrosion or use in excessively smoky environments under any circumstances.
900HP-S3B Wireless Compatibility Notes
Notice: Compatibility Notes Does NOT Apply to the Following Products:
- NCD Enterprise Solutions
- NCD Wireless Sensors
- NCD Enterprise Modems and Gateways
Notice: Compatibility Notes Applies to NCD Industrial Products, Including Fusion, ProXR, ProXR Lite, Taralist, and Reactor Series Products.
Compatibility Notes
When using an 900HP-S3B communication module, it is essential that you use the ZIGMO_PCB to configure the module settings. Long-Range wireless sensors may be programmed over the air without removing the communications module.
A 900HP-S3B Modem or a gateway of some kind that support the 900HP-S3B communications module will also be required.