Our long range wireless enterprise series sensors are an easy to use and reliable start to any data aggregation application. This video will demonstrate how they work, what they do, and how to use them.
Introducing NCD’s Long Range Industrial IoT wireless vibration and temperature sensor, boasting up to a 2 Mile range using a wireless mesh networking architecture. Incorporating a 16-bit Vibration and Temperature sensor, this sensor transmits highly accurate vibration data at user-defined intervals.
During Power-Up, this vibration sensor learns “normal” base-line vibration from the monitored device. This base-line vibration is subtracted from regular sampled vibration readings to improve relevant vibration data. Ideally, the monitored device should be off while the sensor is learning. Once the sensor stabilizes and starts sending data, the device/machinery being monitored can be powered on.
This Industrial IoT wireless vibration sensor samples 3-axis of Vibration data for 900ms and then calculates RMS, Maximum, and Minimum vibration readings. This sensor combines these data with temperature data in a data packet, and transmits the result to modems and gateways within wireless range. Once transmission is complete, the vibration sensor goes back to sleep, thus minimizing power consumption.
Powered by just 4 AA batteries and an operational lifetime of 500,000 wireless transmissions, a 10 years battery life can be expected depending on environmental conditions and the data transmission interval. Optionally, this sensor may be externally powered, making it an ideal choice for wireless vibration monitoring system for industrial equipment.
With an open communication protocol, this sensor transmits hardware encrypted data that can be integrated with just about any control system or gateway. Data can be transmitted to a PC, a Raspberry Pi, to Losant IoT cloud, Microsoft® Azure® IoT, and an embedded system all at the same time. Sensor parameters and wireless transmission settings can be changed using our free LabVIEW® monitoring software on a desktop PC.
The long range, price, accuracy, battery life and security features of Wireless Vibration Sensor makes it an affordable choice which exceeds the requirements for most of the industrial as well as consumer market applications.
Here are some recommended Vibration standards, you can compare these readings with our Long Range IoT Wireless Vibration Temperature Sensor to determine if your device is operating properly or if it may require service (note that actual equipment and application may vary):
A. 0.01g or Less — Excellent condition, No action required
B. 0.35g or less — Good Condition, No action required unless the machine is noisy or running at abnormal temperature
C. 0.5g or less — Fair Condition, No action required unless the machine is noisy or running at abnormal temperature
D. 0.75g or More— Rough Condition, possible action required if machine is noisy and also check the bearing temperature
E. 1g or More — Very Rough Conditions, further analysis and see if its doing this continuously. Also check for noise and temperature
F. 1.5g or More — Danger Level, there is definitely a problem in the machine or installation. Also check the temperature Log
G. 2.5g or More — Shut-down the Machine immediately and look for possible causes. Call a technician for immediate repair
For Heavy Machinery these readings could be 1.5 times to 2 times more than listed above.
This device sends data periodically, based on user-preset timing intervals.
NCD IoT Sensors send a lot more than just sensor data. For instance, a unique serial number is sent so you can always identify a particular sensor on the network. A Node ID is also included, which a single byte of data that you can use for anything, such as the floor of a building or to help identify which group a sensor belongs to. Also included in the data packet is a firmware version, battery level, and sensor type. This allows your software to positively identify and manage the health of NCD IoT wireless sensors. While signal strength data is also available, it is handled in a different way, and is not included in the sensor data packet (but rest assured, signal strength data for each sensor is available). Please see the Resources tab to see detailed information on the data structure of this device.
NCD wireless sensors transmit data and require a receiver. There are many options available for receiving data from NCD IoT devices, which will be discussed in much greater detail below. We highly recommend at least one USB Modem for the purposes of sensor configuration (available during checkout). Also, our LabVIEW software is typically used for advanced sensor configuration, which is located in the “Resources” tab above.
Most NCD IoT Sensors are rated for 300,000 to 500,000 transmissions until the batteries become so weak they are unreliable. You could spread these transmissions out over a 10 year period and send 50,000 transmissions per year. This would allow up to 136 transmissions per day, or about 5 transmissions per hour (for a 500K sensor, or 3 per hour for 300K sensor). If you only need the batteries to last 3 years, you could send 166,666 transmissions per year, or about 456 transmissions per day (about 19 transmissions per hour for a 500K sensor). As you can see, battery life is really up to you. By altering advanced settings in the NCD IoT sensor, you have control over longevity. Please note the 500,000 transmission rating is for premium alkaline batteries. NCD ships all sensors with premium Lithium batteries, which include a ultra-wide temperature range that typically lasts in excess of 600,000 transmissions for some sensor types. These batteries weigh less than half of alkalines, and they work in the freezer! A word of caution though, putting a sensor in configuration mode will drain the batteries very quickly. It’s important to configure your sensors and exit configuration mode as soon as possible or use a external power supply during configuration (if supported by the sensor). The table below indicates how many Transmissions Per Hour (TPH) your can expect from different sensors over a lifespan of up to 10 years.
Battery Life: | 3 Months | 6 Months | 1 Year | 2 Years | 3 Years | 5 Years | 10 Years |
---|---|---|---|---|---|---|---|
300K Sensor | 136 TPH | 68 TPH | 34 TPH | 17 TPH | 11 TPH | 6 TPH | 3 TPH |
400K Sensor | 180 TPH | 90 TPH | 45 TPH | 22 TPH | 15 TPH | 9 TPH | 4 TPH |
500K Sensor | 228 TPH | 114 TPH | 57 TPH | 28 TPH | 19 TPH | 11 TPH | 5 TPH |
600K Sensor | 272 TPH | 136 TPH | 68 TPH | 34 TPH | 22 TPH | 13 TPH | 6 TPH |
TPH = Transmissions per Hour
Under the best of circumstances, the best non-rechargeable batteries commonly available today are limited to a 10 year non-working shelf life in a room temperature environment. Factors such as actual usage, temperature, and humidity will impact the working life. Be wary of any battery claims in excess of 10 years, as this would only apply to the most exotic and expensive batteries that are not commonly available. Also note that most battery chemistries are not rated for use in extreme temperatures. NCD only uses the best Non-Rechargeable Lithium batteries available today, which are also rated for use in extreme temperatures and have been tested by our customers in light radioactive environments. Lithium batteries offer a 10 year maximum expected shelf life due to limitations of battery technology. NCD will never rate sensor life beyond the rated shelf life of the best batteries available today, which is currently 10 years.
Using our long-range USB wireless modem, users can expect easy operation over a virtual COM port at 115.2K baud. Simply open the virtual COM port of the USB modem and watch data stream in. Optionally, we offer a Wireless receiver that operates over Ethernet. Data from NCD sensors will appear over TCP/IP on port 2101. Simply open a TCP/IP socket, port 2101, to the IP address of the Ethernet modem and see your data stream in to your local area network. We have developed LabVIEW® software for each sensor to change advance sensor settings using both Ethernet and USB modems. Alpha Station also allows display of sensor readings as well as limited configuration (this feature is still in development). Of course gateways are also available for sending data to popular cloud platforms such as Amazon® AWS® IoT, Microsoft® Azure® IoT, and Losant (more information below). We take software samples seriously, so be sure to to check out the “Resources” tab to see code samples for Raspberry Pi, Visual Studio, LabVIEW®, Arduino, Python, and more.
During purchase, you will see three frequency options. Not all options are legal for use in all areas, so it’s important to make the right selection during purchase. We will build your product and accessories based on the options chosen. Here, we will explain these options in much greater detail, but please check your local laws BEFORE purchase.
If you are located in North America, the 900MHz Option will provide the longest range currently supported with the best penetration through walls, buildings, industrial equipment, and trees. This option is also the best choice for long range applications. The official Line of Sight rating for this option is 2 Miles with included antennas or 28 Miles with high-gain antennas. We suggest contacting Digi.com for a high-gain antenna recommendation if required. Please check your local laws before choosing this option.
If you are located in Europe, the 868MHz Option is the longest range choice available at this time. This option offers better penetration through walls, buildings, trees, and industrial equipment than 2.4GHz. The official line of site rating for this option is 14.5km using 2.1dBi antennas. Please check your local laws before choosing this option.
The 2.4GHz option should be chosen if 900MHz and 868MHz are not legal for use in your country. This option is now certified for use worldwide, including Europe, United States, Japan, Australia, Brazil, and South Korea. Please check your local laws before choosing this option just in case 2.4GHz is not legal in your area.
If you are unsure of which sensor option to choose, please contact us. We may be able to help determine which sensors are legal for use in your area.
Vibration Sensor Monitoring Applications
We realize that the Industrial Wireless version and the Long Range IoT version seem very similar and in fact are. The Industrial Wireless line has a few improvements over its counterpart in the Long Range Wireless line in form and fit, but maintain the same function. Industrial Wireless versions may have a longer battery life, optional off-board sensors, more accurate readings, and other frequency ranges.
Feature | Industrial Wireless | Long Range IoT |
900 MHZ | X | X |
868 MHz Option | X | |
2-Mile Range | X | X |
Battery Powered | X | X |
Optional External Power | X | X |
Wireless Mesh Capabilities | X | X |
IP65/Outdoor Rated | X | |
Magnetic Mounting Attachments | X | Optional |
External Sensor Probe | Optional |
NCD IoT Sensor Data can be sent anywhere with NO FEES OR HIDDEN COSTS, NOT NOW, NOT EVER! NCD IoT Sensors always provide an open protocol, so you are not tied to any cloud platform. You own your data, so you can do whatever you want with it, no subscriptions, no service contracts, and you can integrate NCD sensors into any software, embedded system, or cloud platform of your own free choice.
Whether you need IoT sensor data on a desktop computer, an IoT cloud platform, or an embedded platform, we have you covered. NCD IoT sensors broadcast data, so data handling is very easy, expandable, and versatile. Send IoT sensor data to Gateways when you want to talk directly to IoT cloud platforms. Send IoT Sensor data to Modems when you want to talk to local computers. Of course you can always send data to both gateways and modems simultaneously, so you always have access to your sensor data locally and remotely. Use multiple Gateways when you need data redundancy or if you need to send sensor data to multiple IoT cloud platforms.
IoT Sensor Clusters are also possible. You can build a cluster of IoT sensors on every floor of a high-rise building, sending data to gateways and modems on each floor. Clustering makes it possible to keep your IoT sensor data separated for easier management. Each Gateway and Modem can be configured to listen to a different cluster of IoT sensors. Because NCD devices support thousands of clusters, expanding your IoT sensor network is virtually limitless.
Collect IoT Sensor Data up to Two Miles Away and send your data to AWS® IoT using the NCD Micro Gateway for AWS. Leverage the power of the AWS® IoT to connect to the complete ecosystem of NCD IoT Wireless Sensors. The NCD Micro Gateway for AWS® automatically provisions the gateway on the AWS® Cloud and registers all IoT sensors as children of the gateway. Watch IoT Sensor data arrive on the AWS® cloud with minimal setup time.
Setup could not be easier. The NCD Micro Gateway uses SoftAP and includes embedded web pages for configuration. Simply connect your Wi-Fi capable computer to the NCD Micro Gateway Access Point and the Configuration Pages will appear. All you need are AWS® connection credentials and a Wi-Fi network with internet connectivity.
Collect IoT Sensor Data up to Two Miles Away and send your data to Microsoft® Azure® using the NCD Micro Gateway for Connection to Azure.
The Micro Gateway for Microsoft® Azure® reports all incoming IoT sensor telemetry as real-world values to Microsoft® Azure® through the connected Device Twin, and/or Device to Cloud Messages.
Setup could not be easier. The NCD Micro Gateway uses SoftAP and includes embedded web pages for configuration. Simply connect your Wi-Fi capable computer to the NCD Micro Gateway Access Point and the Configuration Pages will appear. All you need is an Azure® Device Connection String to register this device to your Azure® account and a Wi-Fi network with internet connectivity.
Collect IoT Sensor Data up to Two Miles Away and send your data to your own MQTT broker using the NCD Micro Gateway for MQTT. Build your own cloud using the complete ecosystem of NCD IoT Wireless Sensors. The NCD Micro Gateway for MQTT sends JSON strings in human-readable values for easy integration into your own dedicated cloud applications. Build your own MQTT Broker or use Ubidots for displaying tiles of NCD IoT Sensor Data in just a few minutes!
Setup could not be easier. The NCD Micro Gateway uses SoftAP and includes embedded web pages for configuration. Simply connect your Wi-Fi capable computer to the NCD Micro Gateway Access Point and the Configuration Pages will appear. All you need are MQTT credentials and a Wi-Fi network with internet connectivity.
Collect IoT Sensor Data up to Two Miles Away and send your data to Losant using the NCD Micro Gateway. Leverage the power of the Losant Flow Builder to build a stunning dashboard that displays graphs of sensor telemetry over time.
The NCD Micro Gateway for Losant automatically provisions the gateway on the Losant Cloud and registers all IoT sensors as children of the gateway. Watch IoT Sensor data arrive on the Losant cloud with minimal setup time.
Setup could not be easier. The NCD Micro Gateway uses SoftAP and includes embedded web pages for configuration. Simply connect your Wi-Fi capable computer to the NCD Micro Gateway Access Point and the Configuration Pages will appear. All you need are Losant connection credentials (Application ID and Application Token) and a Wi-Fi network with internet connectivity.
Losant is an Official Partner of National Control Devices, Learn More about Losant Here.
You’ve been asking for Cellular/Ethernet Solution and we’ve been listening! Pre-loaded with Node-RED and NCD Wireless Sensor Libraries help you get your sensor data connected to a cellular network or connect to Wi-Fi and Ethernet with unprecedented flexibility. This is a perfect solution for developers who are experienced with Node-RED and need the hardware to help get NCD sensors connected for complex integration tasks. Requires experience with Node-RED.
Modems are ideal for communicating to localized computers, servers, and embedded systems. The main purpose of a modem is to convert data from Wireless Sensors and endNode controllers into standard hardware communication formats such as USB Virtual COM Port, Bluetooth Virtual COM Port, Wi-Fi TCP, Ethernet TCP, RS-232, and RS-485. Multiple modems may be used simultaneously, so you are not limited to making a single choice. Add more modems as needed to cover larger areas or explore other communication technologies. Both Modems and Gateways offer long range wireless communications up to 2-Miles line-of-sight. Modems and Gateways may also be used in a Wireless Mesh network to “Hop” data across the wireless network to cover longer distances. Both Modems and Gateways may be grouped into separate networks on each floor of a high-rise building without interference between floors.
We Developed Alpha Station using Visual Studio to demonstrate how IoT sensor data can be received and converted to real-world values. Alpha Station allows you to view and set basic configuration settings of remote sensors up to 2 miles away. Alpha Station supports our Wireless USB Modem, our Mega Modem, and our Wireless Ethernet Modem. The source code and run-time application is available for download on our web site at https://ncd.io/alpha.
We Developed a complete set of Drivers for Node-RED, so you can build your own flows and dashboards to help get you connected. Send NCD IoT sensor data to Node-RED and use flows to build logic operations to send alerts or turn things on or off. Combining Node-RED with NCD IoT sensors gives you limitless power to monitor, control, and visualize data locally and remotely.
The Node-RED Flow Builder is powerful, allowing you to build complex graphs and dashboards in minutes. Node-RED may also be used for advanced Gateway applications. Send data to your favorite IoT Cloud service such as MQTT, Losant, Microsoft® Azure®, or AWS®. Since Node-RED runs on a local computer, a USB, RS-232, Ethernet or Mega Modem is required.
NCD Node-RED Libraries are always expanding, you can read about how to integrate our sensor into Node-RED Here.
We Developed a complete set of tutorials for working with NCD IoT Sensors using LabVIEW®. Use LabVIEW® to configure advanced sensor settings or to graph incoming sensor data. Monitor the battery level of remote sensors and watch sensor data flow over time. We will be adding source code for LabVIEW® in the future, but for now, please contact us if you have a urgent need for source code. Since LabVIEW® runs on a local computer, a USB, RS-232, Ethernet or Mega Modem is required.
Using our LabView software, data logging from a single sensor is also possible. Simply run the software and watch the graph fill with data over time. Export the data into comma delimited tables for use in Excel or into other data analysis tools. Logging data from multiple sensors simultaneously is not supported at this time in our software, but can be accomplished using Losant or Azure web services.
Please check the “Resources” tab above for resources relevant to this product or Click Here to see all of our LabVIEW® resources.
All IoT Device Manufacturers should commit to IoT Security and Transparency. As a consumer, you have the right to a IoT Security and Transparency Statement BEFORE purchase, and we encourage all customers to demand this information from all IoT Manufacturers and Vendors. In an effort to be fully transparent with our customers, we will always disclose the most important security related information at the bottom of each product page for all IoT Devices. Under no circumstances does NCD use IoT devices to collect customer data, sensor readings, or other information without full disclosure. As a matter of NCD IoT Security Policy, any IoT device that collects any form of data must be disclosed in the IoT Security and Transparency Statement. Relevant Security Information pertaining to this particular device is Indicated Below:
Sensor Probe Dimensions
Not for use in outdoor applications or for use in excessive temperature conditions. Prolonged freezing will prevent batteries from functioning until thawed, using extended temperature range industrial batteries may improve the useful temperature range. Extended freezing applications should use a full-time powered solution. Prolonged exposure to extreme humidity conditions may damage this device. The sensing element is rated for use for 5 years and may be replaced. Exposure to high temperatures may cause the batteries to leak, causing permanent damage to this device. NCD Warranty does not cover battery corrosion or use in excessively smoky environments under any circumstances.
Notice: Compatibility Notes Does NOT Apply to the Following Products:
Notice: Compatibility Notes Applies to NCD Industrial Products, Including Fusion, ProXR, ProXR Lite, Taralist, and Reactor Series Products.
Compatibility Notes
When using an 900HP-S3B communication module, it is essential that you use the ZIGMO_PCB to configure the module settings. Long-Range wireless sensors may be programmed over the air without removing the communications module.
A 900HP-S3B Modem or a gateway of some kind that support the 900HP-S3B communications module will also be required.