Our MirX 1-Channel General Purpose Relay Controllers are manufactured in pairs, designed to work together when powered up using Ethernet communications over a local area network. The contact closure input on controller A controls the relay on controller B. Similarly, the contact closure input on controller B controls the relay on controller A. MirX controllers consist of custom firmware that keeps this married pair of controllers in constant communications with each other.
This pair of MirX controllers is equipped with your choice of 5-Amp or 10-Amp SPDT relays, ideal for use in most general purpose switching applications. Ideal for lights, small motors, gate openers, and much more. On-board Relay status LEDs and busy/ready LEDs let you know when these controllers are talking to each other.
Video shows wireless version of MirX controllers.
This Device no-longer communicates over the internet due to changes in technology. Please contact us for a internet connected solution is required.
MirX Controllers Mirror Consist of two Identical controllers. These controllers are equipped with contact closure inputs and relays. The contact closure inputs on controller one are replicated on controller two. Similarly, the contact closure inputs on controller two are replicated on controller one. Mirror controllers are paired during initial configuration, ensuring peaceful co-existence on your network. MirX controllers stay connected to each other using Ethernet network communications. Inputs on the transmitting controller activate the relays on the receiving controller. The Ethernet interface supports DHCP as well as static IP addresses (IPv4). For used in a Local Area Network only (not for use over the internet).
MirX controllers are always talking to each other. They stay in relentless communications for optimal reliability. Should they lose communication with each other, they will keep calling out for each other until they find their mate.
Every MirX controller is equipped with contact closure inputs and relay outputs. The inputs on one controller activate the relays on the remote device using Ethernet network communications. The “X” in MirX refers to the crossover. Since both devices are equipped with contact closure inputs and relays, each device targets and controls the remote device. Every MirX controller is equipped with a Busy/Ready LED. If the Busy LED flashes, this indicates the remote device has successfully received and accepted your contact closure status. If the Busy LED does not flash, the remote device not visible on the network.
Beacon Mode communicates with a Remote MirX controller many times per second, refreshing Relay Status information every time a valid data stream is received by the remote device. Relays are only refreshed when a valid data packet is received. If data is lost, the Ready LED will stay on and Relays will stay in their current state. If the remote MirX controller looses network communications, the Busy LED will flash periodically, indicating valid communications between devices. Beacon Mode is slower than Smart Mode and is used primarily for initial testing of two devices.
Once you have determined an installation location for both MirX controllers, move the Beacon/Smart jumper to the Smart position. Smart Mode communicates to the remote device any time a change is detected on the local device. Otherwise, the controller periodically checks to make sure the remote device is in communicating over the network. Smart Mode is significantly faster than Beacon Mode. Smart Mode is the preferred mode for daily use in most applications. Note that each MirX controller can be set to a different mode and jumper changes take effect immediately. Again, the Busy LED will indicate the remote device is properly communicating. Smart Mode will also verify the relays on the remote device are properly set. If they are not, Smart Mode will attempt communications until the remote device responds. If communications is lost between the MirX controllers, all relays will automatically shut off within 30 seconds. If this is not desirable, Beacon Mode should be used.
Perhaps the most notable difference between Beacon and Smart Mode is how relays respond if communication is lost. In Beacon Mode, the relays will stay in their current state and will not change unless a new data packet is received. In Smart Mode, relays will turn off automatically in 10 to 30 seconds if communications is lost between MirX controllers.
MirX controllers are typically used by our large industrial clients for a wide range of remote control switching applications. Typical installations include remote gate operation, remote light control, remote pump control, as well as various temperature override applications. Since MirX includes relays on each side, local relays are typically used for verification purposes, such as limit switches or remote door switches, indicating the remote device has completed its control function. MirX controllers are typically used instead of expensive trenching and drilling applications where running wire can be destructive and sometimes cost prohibitive. MirX is commonly used in signage applications that may require a warning light as a supplement to a standard traffic light. MirX is also used by our customers to provide remote operation of lights, doors, gates, motors, pumps, and valves.
NCD manufactures several variations of MirX as well as other Mirror series devices. Here are some variations you may wish to consider:
MirX offers several relay options, depending on your application. We stock solid-state, high-power, and general purpose relays in our MirX line of products. However, we can customize our MirX controllers to your exact needs. Please contact us if you need any custom designed MirX controllers, including different relay types or firmware modifications. This particular controller has the following relay options available:
This product may have been previously manufactured using a part number shown below:
This controller is available with a 10-Amp relay option, allowing control of higher-power loads up to an absolute maximum of 240VAC at 10 Amps. Ideal for general purpose switching applications, this relays is focused on power-switching, and should never be used for low-power signals due to a higher On resistance of up to 150 Ohms when relay contacts are new (contact resistance drops to less than 1 Ohm after break-in period). The 10-Amp relay is of the SPDT variety, which provides Common (C), Normally Open (NO), and Normally Closed (NC) connections. Common is connected to NC when the relay is off. Common disconnects from NC and connects to NO when the relay is activated. All connections are made via screw terminals, capable of accepting up to 12 AWG wire. Review Datasheet
This controller is available with a 5-Amp relay option, allowing control of higher-power loads up to an absolute maximum of 240VAC at 5 Amps. Ideal for general purpose switching applications, this relays is focused on power-switching, and should never be used for low-power signals due to a higher On resistance of up to 150 Ohms when relay contacts are new (contact resistance drops to less than 1 Ohm after break-in period). The 5-Amp relay is of the SPDT variety, which provides Common (C), Normally Open (NO), and Normally Closed (NC) connections. Common is connected to NC when the relay is off. Common disconnects from NC and connects to NO when the relay is activated. All connections are made via screw terminals, capable of accepting up to 12 AWG wire. Review Datasheet
This video will guide you in determining which relay controller you need for your application as well as a general overview of the differences between Relay Options. If you’re new to our products or just need a refresher for a new application this is a great place to start.
Learn how MirX Relay Controllers work and how to get the most out of them. MirX is a powerful two way relay control technology using simple contact closures to control remote relays. A contact closure in one location trigger the corresponding relay in another location on a married pair. No wires, no software, it just works. This contact closure can be a simple switch, or any sensor that outputs a contact closure such as some current sensors and most proximity sensors.
Learn about Induction and how it comes into play with Relay Controllers. Induction suppression can make your Relay Control applications intermittent and unreliable. This video will show you what causes it, how to avoid it, and how to account for it in your application.
Specifications of NCD SPDT Relay Controllers | Minimum | Nominal | Maximum | Notes |
---|---|---|---|---|
Operational Voltages | 10VDC | 12VDC | 15VDC | |
Standby Power Consumption | 35mA | 100mA | 200mA | No Active Relays, No Com Module |
Relay Power Consumption | 28mA | 35mA | 60mA | Consumption of Each Activated Relay |
Operational Temperature Range | -40°F (-40°C) | 70°F (21°C) | 185°F (85°C) | Theoretical Component Limits Shown |
Storage Temperature Range | -67°F (-55°C) | 70°F (21°C) | 185°F (85°C) | Theoretical Component Limits Shown |
Operational Ambient Air Humidity | 0% | 50% | 70% | Non-Condensing Humidity Values Shown |
Relay Activation Time | 4ms | 5ms | 10ms | Needs Further Validation |
Relay Deactivation Time | 5mS | 10mS | 15mS | Needs Further Validation |
Specifications of NCD Communication Modules | Minimum | Nominal | Maximum | Notes |
---|---|---|---|---|
Operational Temperature Range | -40°F (-40°C) | 70°F (21°C) | 185°F (85°C) | Theoretical Component Limits Shown |
Storage Temperature Range | -67°F (-55°C) | 70°F (21°C) | 185°F (85°C) | Theoretical Component Limits Shown |
Operational Ambient Air Humidity | 0% | 50% | 70% | Non-Condensing Humidity Values Shown |
USB Communications Module Power Consumption | NA | NA | NA | USB Modules are Powered by the USB Port Do Not Consume Device Current |
RS-232 Communications Module Power Consumption | 10mA | 20mA | ||
RS-485 Communications Module Power Consumption | 20mA | 35mA | ||
Ethernet Communications Module Power Consumption | 58mA | 82mA | 100mA | |
WiFi Bluetooth USB Communications Module Power Consumption | 37mA | 50mA | 100mA | Up to 300 Foot Indoor Wireless Range, Unobstructed. Up to 50 Foot Range Through Walls. |
900MHz Wireless Communications Module Power Consumption | 13mA | 30mA | 50mA | Up to 1,000 Foot Indoor Wireless Range, up to 2 Mile Outdoor Wireless Range using Included Antennas. Up to 28 Miles Outdoor Wireless Range using High-Gain Antennas. |
868MHz Wireless Communications Module Power Consumption | 17mA | 30mA | 50mA | |
2.4GHz Wireless Communications Module Power Consumption | 8mA | 20mA | 30mA | |
KFX Wireless Key Fob Communications Module Power Consumption | 11mA | 15mA | 25mA | Up to 200 Feet Outdoor Wireless Range using 1, 2, 3, 4, or 5 Button Key Fobs. Up to 700 Feet Outdoor Wireless Range using 8-Button Remotes. |
MirX devices are only sold as a permanently married pair, pricing shown on our web site indicates pricing for the pair of controllers. Contact Closure Inputs may only be connected to switches, buttons, or sensors with Contact Closure capability. Not suitable for use in voltage detection applications. Data is transacted using two-way communications to ensure the remote device is properly functioning. The Busy LED is always used to indicate a properly functioning remote device. If you do not see the Busy LED flash, then the MirX controller is unable to communicate to the remote device. A flashing busy LED is your verification that all communications are functioning properly between MirX controllers.
Customers who require inductive switching (such as motors, lights, pumps, solenoids, and Transformers) should visit the Induction Suppression portion of our web site.
Please Note: Users must NEVER apply any voltage to an input on the MirX controller, these inputs are for Contact Closure connections only.
Please Note: Relays provide a contact closure output. They do not provide a voltage output. On-Board relays will switch a voltage that is provided externally by the user.
This device periodically sends UDP Packets on port 13,000, which help identify the IP address of this device on your network.